Back to Basics - Data Science
Statistics Introduction to Probability: Probability Distributions: Expected Value: Code | Slides | Video Bayes Theorem: Central Limit Theorem: Code | Slides | Video Confidence Interval: Code | Slides | Video Hypothesis Testing: Code | Slides | Video p-value: Type I and Type II Errors: Code | Slides | Video Power of a Test: t-test: Code | Slides | Video ANOVA: Code | Slides | Video Chi-Square Test: Linear Regression: Machine Learning Logistic Regression: Decision Trees: Random Forests: Gradient Boosting: Support Vector Machines: K-Nearest Neighbors: K-Means Clustering: Hierarchical Clustering: Principal Component Analysis: Singular Value Decomposition: Deep Learning Neural Networks: Convolutional Neural Networks: Natural Language Processing Word Embeddings: Word2Vec: GloVe: FastText: BERT: LeetCode (Grind75) Two Sum R tidyverse: ggplot2: dplyr: tidyr: purrr: readr: tibble: stringr: Python numpy: pandas: matplotlib: seaborn: scikit-learn: scipy: decorator: